Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37458941

RESUMO

Xylanase production by Streptomyces sp. S1M3I was optimized by response surface methodology (RSM), followed by a partial characterization of these enzymes. Olive pomace was used as a substrate for growing Streptomyces sp. S1M3I in submerged fermentation. Effects of incubation time, pH, temperature, carbon source, nitrogen source, and inoculum size on xylanase production were studied, through the one-factor-at-a-time method. Then, a 33-factorial experimental design with RSM and the Box-Behnken design was investigated for the major influence factors. Maximum xylanase production (11.28 U/mL) was obtained when the strain was grown in mineral medium supplemented with 3% (w/v) of olive pomace powder and 0.3% (w/v) of ammonium sulfate, at a pH 7.4 and an incubation temperature of 40 °C. The xylanases in the supernatant degraded all tested substrates, with higher activity for the low-viscosity wheat arabinoxylan substrate. Two xylanases with close molecular masses were detected by zymogram analysis: Xyl-1 and Xyl-2 with molecular masses of 24.14 kDa and 27 kDa, respectively. The optimization of enzyme production parameters of Streptomyces sp. S1M3I and the characterization of these enzymes are prerequisites to enhancing xylanase production yield, which is crucial for further biotechnological processes.

2.
Molecules ; 28(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37241981

RESUMO

The emergence of the antimicrobial resistance phenomena on and the harmful consequences of the use of antibiotics motivate the necessity of innovative antimicrobial therapies, while natural substances are considered a promising alternative. Rosmarin is an original plant compound listed among the hydroxycinnamic acids. This substance has been widely used to fight microbial pathology and chronic infections from microorganisms like bacteria, fungi and viruses. Also, various derivatives of rosmarinic acid, such as the propyl ester of rosmarinic acid, rosmarinic acid methyl ester or the hexyl ester of rosmarinic acid, have been synthesized chemically, which have been isolated as natural antimicrobial agents. Rosmarinic acid and its derivatives were combined with antibiotics to obtain a synergistic effect. This review reports on the antimicrobial effects of rosmarinic acid and its associated derivatives, both in their free form and in combination with other microbial pathogens, and mechanisms of action.


Assuntos
Anti-Infecciosos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Ésteres/farmacologia
3.
Foods ; 12(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36766194

RESUMO

The inactivation of Escherichia coli is one of the major issues in the food industry. The present study focuses on the application of a combined microwave-ultrasound system for the optimization of the inactivation of Escherichia coli ATCC 25922 in an orange juice drink. Using response surface methodology (RSM), trials were planned with a Box-Behnken Design (BBD) to maximize the impact of microwave power (A: 300-900 W), microwave treatment time (B: 15-35 s), and time of ultrasound (C: 10-30 min) on E. coli inactivation. Analysis of variance (ANOVA) was carried out and E. coli inactivation was expressed with a mathematical equation depending on the factors. The results showed that both the microwave treatment time and the time of ultrasound were effective as independent variables in eliminating the E. coli strain. However, the effect of these two variables, ultrasound and microwave exposure time, in combination was significantly greater than when examined separately. RSM modeling determined that optimal treatment conditions include 900 W microwave power, 33 s microwave treatment time, and 20 min time of ultrasound to achieve an 8-log reduction of E. coli, constituting total inactivation. The results of this study showed that ultrasound-microwave treatment is a potential alternative processing method for an orange juice beverage.

4.
Int. microbiol ; 25(2): 379-396, May. 2022. ilus
Artigo em Inglês | IBECS | ID: ibc-216039

RESUMO

Unique environments often serve as a source of novel microorganisms with novel chemistries. In this study, telluric samples collected from different regions of Algeria were processed for the isolation of novel peroxidase-producing actinobacterial strains. An agar-based screening identified 45 isolates with the ability to produce peroxidase. The 16S rRNA gene sequencing showed that most of the strains belong to the genus Streptomyces. Optimization of cultivation conditions was performed for the top five peroxidase-producing strains. Apart from strain 36 (optimal growth temperature of 30 °C) and strain 45 (optimal medium pH of 6.0), the strains exhibited optimal peroxidase production when cultivated for 5 days at 37 °C and in a medium at pH 7.0. Extracellular peroxidase production was induced by ferulic acid in three of the five strains, while the presence of canola lignocellulosic waste (CLW) induced peroxidase production in all strains. Strain 19 (S19) was selected for further optimization and the extracellular peroxidase purified using acid and acetone precipitation, followed by size exclusion chromatography. The purified fraction showed a single band on the polyacrylamide gel with an estimated molecular weight of 21.45 kDa. Genome analysis confirmed the assignment of S19 to the genus Streptomyces, the presence of genes encoding for peroxidases, and the presence of genes encoding for carbohydrate-active enzymes. The presence of biosynthetic gene clusters potentially encoding for biosurfactants further highlighted the great biotechnological potential of the strain.(AU)


Assuntos
Peroxidase , Streptomyces , Actinobacteria , Análise de Sequência de RNA , Microbiologia , Argélia
5.
Int Microbiol ; 25(2): 379-396, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35059906

RESUMO

Unique environments often serve as a source of novel microorganisms with novel chemistries. In this study, telluric samples collected from different regions of Algeria were processed for the isolation of novel peroxidase-producing actinobacterial strains. An agar-based screening identified 45 isolates with the ability to produce peroxidase. The 16S rRNA gene sequencing showed that most of the strains belong to the genus Streptomyces. Optimization of cultivation conditions was performed for the top five peroxidase-producing strains. Apart from strain 36 (optimal growth temperature of 30 °C) and strain 45 (optimal medium pH of 6.0), the strains exhibited optimal peroxidase production when cultivated for 5 days at 37 °C and in a medium at pH 7.0. Extracellular peroxidase production was induced by ferulic acid in three of the five strains, while the presence of canola lignocellulosic waste (CLW) induced peroxidase production in all strains. Strain 19 (S19) was selected for further optimization and the extracellular peroxidase purified using acid and acetone precipitation, followed by size exclusion chromatography. The purified fraction showed a single band on the polyacrylamide gel with an estimated molecular weight of 21.45 kDa. Genome analysis confirmed the assignment of S19 to the genus Streptomyces, the presence of genes encoding for peroxidases, and the presence of genes encoding for carbohydrate-active enzymes. The presence of biosynthetic gene clusters potentially encoding for biosurfactants further highlighted the great biotechnological potential of the strain.


Assuntos
Actinobacteria , Streptomyces , Argélia , Peroxidase/genética , Filogenia , RNA Ribossômico 16S/genética , Streptomyces/genética
6.
Molecules ; 26(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926080

RESUMO

Plant biomass constitutes the main source of renewable carbon on the planet. Its valorization has traditionally been focused on the use of cellulose, although hemicellulose is the second most abundant group of polysaccharides on Earth. The main enzymes involved in plant biomass degradation are glycosyl hydrolases, and filamentous fungi are good producers of these enzymes. In this study, a new strain of Aspergillus niger was used for hemicellulase production under solid-state fermentation using wheat straw as single-carbon source. Physicochemical parameters for the production of an endoxylanase were optimized by using a One-Factor-at-a-Time (OFAT) approach and response surface methodology (RSM). Maximum xylanase yield after RSM optimization was increased 3-fold, and 1.41- fold purification was achieved after ultrafiltration and ion-exchange chromatography, with about 6.2% yield. The highest activity of the purified xylanase was observed at 50 °C and pH 6. The enzyme displayed high thermal and pH stability, with more than 90% residual activity between pH 3.0-9.0 and between 30-40 °C, after 24 h of incubation, with half-lives of 30 min at 50 and 60 °C. The enzyme was mostly active against wheat arabinoxylan, and its kinetic parameters were analyzed (Km = 26.06 mg·mL-1 and Vmax = 5.647 U·mg-1). Wheat straw xylan hydrolysis with the purified ß-1,4 endoxylanase showed that it was able to release xylooligosaccharides, making it suitable for different applications in food technology.


Assuntos
Aspergillus niger/metabolismo , Endo-1,4-beta-Xilanases/biossíntese , Fermentação , Glucuronatos/biossíntese , Oligossacarídeos/biossíntese , Triticum/química , Resíduos , Algoritmos , Biomassa , Fenômenos Químicos , Endo-1,4-beta-Xilanases/isolamento & purificação , Ativação Enzimática , Glucuronatos/isolamento & purificação , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Químicos , Oligossacarídeos/isolamento & purificação , Polissacarídeos/biossíntese , Especificidade por Substrato , Xilanos/química
7.
Environ Sci Pollut Res Int ; 27(29): 37164-37172, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32705554

RESUMO

In a previous study, a thermostable α-amylase-producing bacterium (designated HB23) was isolated from an Algerian hydrothermal spring. In the present study, the native strain was subjected to a statistical optimization aimed at enhancing the α-amylase production. To achieve this, thirteen factors have been studied, among which are cultural and nutritional parameters. Wheat bran, a by-product of the grain milling industry, was the factor that positively influenced α-amylase production. A modified L27 Taguchi design was used to screen these factors. Furthermore, a Box-Behnken matrix, supplemented by the use of response surface methodology (RSM), allowed for the identification of optimum levels of the following factors: a 1% inoculum size, 15 g/L soluble starch, 5 g/L wheat bran, and 1 g/L tryptone. Optimized conditions resulted in an amylolytic activity of 320 U/mL, which is a tenfold increase when compared with unoptimized production level. Phenotypical and molecular identification of strain HB23 revealed its close relationship to various Tepidimonas strains, specifically to Tepidimonas fonticaldi. The crude enzyme preparation turned out to be compatible with various laundry detergents and led to a substantial improvement in their washing performance. A comparison of the performance of the crude enzyme preparation with that of the commercial α-amylase (Termamyl® 300 L) highlights the potential of the HB23 enzyme as a bio-additive in detergent formulations.


Assuntos
Detergentes , alfa-Amilases , Burkholderiales , Fibras na Dieta , Amido
8.
Int J Biol Macromol ; 132: 558-574, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30928371

RESUMO

The present study investigated the purification, biochemical, and molecular characterization of a novel thermostable α-amylase (TfAmy48) from Tepidimonas fonticaldi strain HB23. MALDI-TOF/MS analysis indicated that the purified enzyme is a monomer with a molecular mass of 48,138.10 Da. The results from amino-acid sequence analysis revealed high homology between the 25 NH2-terminal residues of TfAmy48 and those of Gammaproteobacteria α-amylases. The optimum pH and temperature values for α-amylase activity were pH 8 and 80 °C, respectively. Thin-layer chromatography (TLC) analysis showed that the final hydrolyzed products of the enzyme from soluble potato starch were maltopentaose, maltose, and maltotriose, which indicate that TfAmy48 possessed an endo-acting pattern. Compared to Termamyl®300 L, TfAmy48 showed extreme stability and tolerance towards organic solvents and excellent compatibility with some commercial laundry detergents. These proprieties make TfAmy48 enzyme a potential candidate as a cleaning bioadditive in detergent composition. The Tfamy48 gene encoding TfAmy48 was cloned, sequenced, and heterologously-expressed in the extracellular fraction of Escherichia coli strain BL21(DE3)pLysS. The biochemical properties of the extracellular purified recombinant enzyme (rTfAmy48) were similar to those of native one. The highest sequence identity value (97%) was obtained with PsAmy1 α-amylase from Pseudomonas sp. strain KFCC10818, with only 16 amino-acid (aa) residues of difference.


Assuntos
Burkholderiales/enzimologia , Espaço Extracelular/enzimologia , Temperatura , alfa-Amilases/química , alfa-Amilases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Burkholderiales/genética , Clonagem Molecular , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Metais/farmacologia , Modelos Moleculares , Peso Molecular , Domínios Proteicos , Análise de Sequência de DNA , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...